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Next Generation CAN FD Controller Core 
 

Daniel Leu, Inicore 
 
The new CAN FD specification offers several enhancements over the current ISO 
11898-1 standard such as an eightfold increase in the data field length and enhanced 
data throughput. In order to provide high efficiency of the software, the CAN 
controller’s host interface and message handling need to be streamlined and 
optimized. 
This paper discusses the implementation and verification of a new FIFO-based CAN 
FD core with an application programming interface that minimizes processor read and 
write cycles and has dedicated sideband signals to support DMA-based message 
transfers. The core contains supportive debug logic to assist the system in analyzing 
and optimizing CAN traffic, something especially important when using higher data 
rates. Verification testbench and lab setup are presented as well. 
 
In modern system-on-chip (SOC) designs, 
the CAN interface is located together with 
other low-speed peripherals. Although the 
data throughput of the new CAN FD is 
significantly higher than that of regular 
CAN, it is still marginal compared to 
Gigabit Ethernet, USB 3 or other high 
performance interfaces. 
Figure 1 shows a typical architecture of a 
modern SOC with several local buses that 
are interconnected with bus bridges. A 
CAN interface can placed at many 
different locations. 

 

Figure 1: System-on-chip architecture 

– CAN 1 is connected to the main system 
bus: it is very unlikely to have the CAN 
peripheral directly connected to the 
system bus due to its low-performance 
characteristics. 

– CAN 2 is connected to the preliminary 
peripheral bus: this is a very likely setup 
for regular peripheral devices. 

– CAN 3 is connected to the secondary 
peripheral bus: in more complex 
systems with additional high-
performance buses, the CAN peripheral 
might move even further away from the 
processor. 

– CAN 4 as a standalone CAN controller 
connected to the SOC via an external 
bus interface (EBI). 

 
We looked at some timing data from FPGA 
SOC devices. Table 1 shows the 
maximum frequency the processor and the 
different buses run at. For this analysis, 
the absolute value of the bus frequency is 
not important. The interesting factor is the 
ratio of the processor to the peripheral bus 
frequency. 
In most devices, this ratio can be changed 
to conserve power if a sub-bus doesn’t 
need to run at the maximal frequency. 
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Table 1: Bus performance in MHz 

Device Proces
-sor 

System 
bus 

Peripheral 
bus 

Altera Aria V 800  400  200  
Microsemi 
SmartFusion 100  100  50  

Microsemi 
SmartFusion 2 166  166  166  

Xilinx Zinq1 600  300  150  
Xilinx Zinq2 800  266  133  

 
The location of a peripheral device in a 
SOC has a significant performance impact. 
The further away the peripheral device is 
from the processor, the longer it takes for 
the data to travel. There are different 
sources that impact this delay: 
– A system bus usually runs at a lower 

frequency than the processor. 
– Every time data crosses from one bus 

to another, a delay of one or more clock 
cycles is introduced. 

– Accessing a new bus might be delayed 
because of an already ongoing data 
transfer. 

– Sub-buses tend to run at a lower 
frequency than main buses. 

– Accessing external devices is always 
slow. 

All these delays add up and slow down a 
data read or write cycle to a peripheral 
device. 
But there are ways to address this:  
1) Modern system buses provide the 
option to transfer data in blocks. This 
doesn’t change any of the delays seen for 
a single transfer, but each additional data 
word just takes one or two extra peripheral 
clock cycles. 
2) Instead of having the processor fetching 
the data, an external direct memory 
access (DMA) controller can transfer it in 
the background while the processor 
continues its normal operation. 
To summarize, it is important to have the 
following goals – among others, in mind 
when designing a peripheral device for a 
modern SOC: 
– Limit the number of access cycles 
                                                
1 Using 4:2:1 clock ratio selection 
2 Using 6:2:1 clock ratio selection 

– Support block transfers 
– Support data transfers without or only 

with limited processor involvement 

Features 

As a lucky coincidence, CAN FD came 
along exactly when we started planning 
our next generation CAN controller core. 
With the higher data throughput, this nicely 
fit into the features we had already laid 
out: 
 
General architecture: 
– FIFO based  
– Separate clock domains for CAN and 

system logic 
– Optimized API 
– Support for external DMA controller 
– Error capture feature to support bus 

debugging 
– Designed for FPGA and ASIC targets 

 
Receive Buffer improvements: 
– Up to two receive FIFOs 
– Up to 32 enhanced message filters with 

mask and range match mode; covering 
ID, new CAN FD control flags and two 
most significant data bytes 

– Programmable FIFO length and 
message length  

– 32-bit timestamp 
 
Transmit Buffer improvements: 
– One transmit FIFO that preserves 

message order (no priority inversion) 
– One transmit queue where the highest 

priority message is sent first. 
– Programmable FIFO and queue length 

and message length  
– Support for message tag 
 
We then added the support for the CAN 
FD and mixing and matching CAN 2.0 A/B 
and CAN FD messages. 

Ease of use 

Although CAN FD brings new features and 
complexities to a CAN controller, it does 
not mean that it needs to be more difficult 
to use. The API of our CAN FD controller 
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core, CANmodule, was designed with 
ease-of-use in mind: 
 
– Consistent buffer size: All message 

objects of a given message buffer (eg. 
RxFIFO0) have the same size. 

– Identical layout for receive and transmit 
buffer  

– Configurable number of message 
objects per buffer  

– Targets 32-bit bus systems 
– Designed to minimize access cycles 

CANmodule overview 

As stated earlier, our next generation CAN 
controller uses FIFOs as message buffers. 
A common core external memory is used 
for storage.  
 

 
Figure 2: CANmodule Block diagram  
 
This way, one can configure the core to 
optimally use the available resources and 
match the application requirements. 
 
– The CAN Engine handles the low-level 

CAN bus traffic. 
– The Memory Arbiter manages access 

requests to the common memory. 
– The Receive Handler performs the 

message filtering and contains the 
receive FIFO logic. 

– The Transmit Handler contains the 
transmit FIFO and Queue and the 
message arbiter to select the highest 
priority message. 

– The Bus Interface has the logic to 
connect to the host bus as well as all 
configuration registers, interrupt and 
debug logic. 

– The block DMA Support contains the 
dedicated logic for DMA support and 
the necessary DMA sideband signals. 

DMA support 

Using an on-chip DMA controller greatly 
reduces the processor overhead related to 
moving data. The DMA controller 
autonomously transfers data between the 
peripheral and system memory. The 
processor only gets interrupted once the 
programmed data transfer is complete. 
 

 
Figure 3: DMA data sequence (receive) 
 
Once the DMA controller and the 
CANmodule are programmed for DMA 
transfers, data is transferred between the 
peripheral and the system memory: 
 

1) The CANmodule asserts dma_req 
to indicate that enough data is 
available for a transfer. 

2) The DMA controller fetches the 
data from the requesting device 

3) Then stores it in the destination 
memory. 

4) Once the programmed number of 
words are transferred, the 
dma_irq is asserted and the 
processor receives this interrupt. 

 
The CANmodule provides all necessary 
sideband signals to support both simple 
DMA controllers, that only have a 
dma_req signal, and complex DMA 
controllers that have a more sophisticated 
interface. 
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If DMA transfers are not used, dma_req 
can be repurposed as a dedicated 
interrupt signal to indicate that receive 
data is available or that the transmit FIFO 
can accept more data. 
In order to support DMA operation, the 
CANmodule contains an auto-
acknowledge / auto-transmit feature. If 
enabled, this works like this:  
– On the Receive buffer:  

Once an entire message is read, the 
message acknowledge flag is 
automatically asserted. There is no 
need to set this flag by an additional 
write operation. 

– On the Transmit buffer: 
Once the entire message has been 
written, the message transmit request 
flag is automatically set. There is no 
need for an additional write or 
read/modify/write operation. 
 

This auto-acknowledge / auto-transmit 
feature can also be used independently of 
the DMA operation. 

Shared Memory 

Not all applications have the same 
resource requirements. Some might only 
need one receive FIFO and a big transmit 
queue while others need two big receive 
FIFOs and only a small transmit queue. 
Figure 4 shows the layout of the common 
memory that is shared by the receive and 
transmit handlers.  
The number of objects each section 
supports is configurable. In order to 
simplify the implementation, the start 
address of each section needs to be set 
as well. 
 
 

 
Figure 4: Shared memory layout 

Transmit Handler 

The CANmodule supports two ways of 
sending a message: 1) using the transmit 
FIFO (TxFIFO) and 2) using the transmit 
queue (TxQueue). 
 

 
Figure 5: Transmit handler 
 
The TxFIFO is used when the message 
order may not be changed. For example 
with CANopen block messages, a change 
in order would destroy the proper data 
sequence. 
When using the TxQueue, the message 
with the highest priority is sent first.  
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Whenever a message is sent, aborted or a 
single-shot transmission error is detected, 
an entry is added to the Tag FIFO. An 
entry consists of the result code, message 
identifier, tag field and the timestamp. 

Receive handler 

The receive handler contains two receive 
FIFOs (RxFIFO 0/1) that can be 
individually configured.  

 
Figure 6: Receive handler 
 
Whenever a new message arrives, the 
Receive Handler checks it against all 
message filter settings. If a match is found, 
the message is stored in the specified 
RxFIFO. 
Whenever the start-of-frame (SOF) field of 
a new message is detected, the actual 
timestamp is saved and added to the 
message when it is stored in the RxFIFO. 
There are applications where it is very 
important to synchronize all nodes with a 
special sync message. The CANmodule 
contains a hardware trigger output 
(hw_trigger) that is asserted whenever 
a match on message filter 0 is detected. 
This output can be used as a dedicated 
interrupt source or it can directly feed user 
logic that synchronizes a hardware based 
timer. 
 
Design Verification 
 
Prior to using the core inside an FPGA in 
the lab, we verified it through simulation. 
We developed two different testbenches. A 
CAN conformance testbench to verify the 
low-level CAN protocol on a time-quanta 
basis, and a system-level testbench to 
verify the host bus interface and all the 
message handling. 

CAN conformance testbench 
 
The testbench shown in Figure 7 is based 
on the test procedures defined in ISO 
16845 and enhanced for CAN FD. 
 

 
Figure 7: CAN conformance testbench 
 
The meanings of the different blocks are: 
– DUT: Device Under Test (CANmodule) 
– DUT Handler: this is a simple state-

machine that decodes and executes 
commands received via the CAN bus. 

– CAN Transceiver Functional Model: this 
models CAN bus transceiver with 
programmable transmit and receive 
delays 

– CAN Logger: this module logs CAN 
activity and reports any errors detected. 

– CAN BFM: the CAN Bus Functional 
Model generates the bus traffic based 
on command received from the Stimuli 
Generator 

– Stimuli Generator: these modules 
implement the test procedures and 
execute them. Results are checked 
against the expected value and success 
and errors are reported. 

 
System-level Testbench 
 
The testbench shown in Figure 8 is used 
to verify the entire message handling and 
processor interface of the CANmodule. 
The block diagram looks very similar to 
that of the conformance testbench and 
many components are shared. The main 
difference is that we use a bus functional 
model for the host interface (APB or AXI 
BFM), which is controlled by the stimuli 
generator block.  
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Figure 8: System-level testbench 
 
Several Stimuli Generators are used to 
exercise the DUT to cover all regular and 
error scenarios, so that everything would 
be verified before programming an FPGA 
going to the lab for hardware verification. 

FPGA Design 

SOC FPGAs nowadays contain entire 
microcontroller subsystems with all 
standard features of a standalone 
processor combined with a traditional 
FPGA fabric. They serve as a  very flexible 
platform for custom microprocessor-based 
integrations. 
We used Microsemi’s SmartFusion FPGA 
as our test vehicle to verify proper 
operation of the CANmodule in our lab. An 
APB3 bus master is exposed to the FPGA 
fabric that connected to our local APB3 
bus and the CANmodule core.  
 

 
Figure 9: FPGA block diagram 
 
We have two different versions of this 
FPGA, one with one CAN channel and a 
second with two CAN channels. 
 

Hardware Setup 

To show and test proper operation of the 
CANmodule with the new CAN FD 
protocol, we setup a simple 5-node 
network in our lab. It consist of following 
components: 
– Vector VN1630: Dual channel CAN 

network interface using the Bosch M-
CAN module implemented in a FPGA. 
These two nodes are the reference in 
our system. 

– FPGA board 1 (bottom left): Dual 
channel CANmodule implementation 

– FPGA board 2 (bottom right): Single 
channel CANmodule implementation as 
shown in Figure 9. 

 

 
Figure 10: Lab setup of CAN network 

 
In our test setup, we use one channel of 
the VN1630 as the protocol logger and the 
other as a test generator. On the two 
FPGA boards, we have test software 
running that generates CAN FD frames 
with different data lengths, varying ID and 
data content.  

Outlook 

The presented implementation uses a 
standard AMBA APB3 bus interface. APB3 
is a slow peripheral bus with a data and an 
address phase. A future version of the 
core will use a higher performance AXI 
interface that supports burst mode. 
Once CAN FD is standardized and the ISO 
16845 CAN conformance test plan is 
updated, we will submit the CANmodule to 
C&S for conformance testing. 
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