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This paper introduces a novel approach for systematical development of CAN-based 
systems with guaranteed functional correctness and optimal performance.  This 
approach relies on formal methods for faithful modeling and analysis of such 
systems, whilst taking into consideration the effects of critical parameters, such as bit 
stuffing and buffer utilization. As a proof of concept, the approach has been applied 
on existing benchmarks simulating realistic automotive networks. The results are 
similar to ones obtained using domain-specific tools e.g. Netcarbench. Moreover, this 
work creates new perspectives and reveals potential application for the generation of 
optimal device configurations for the recently developed CAN FD protocol. 
 
1. Introduction  
 
Controller Area Network (CAN) [1] has 
emerged as a dominant network 
technology over the last 20 years, mainly 
due its robustness and cost-effectiveness.                       
Nonetheless, the design of complex CAN-
based systems remains challenging.  To 
facilitate their design, high-level protocols 
built on top of CAN, such as CANopen [2] 
and DeviceNet [3], have been proposed.  
These protocols offer primitives to 
organize and to abstract the complexity of 
low-level communication in a CAN 
network. Complex networked systems can 
be much easily built but, however, such 
systems remain difficult to validate a priori.  
Previous studies have pointed out the 
importance of conformance testing [4] [5]. 
Nevertheless, testing occurs only late in 
the development cycle and requires the 
final system implementation.  Earlier 
detection of functional errors as well as 
earlier performance analysis is paramount 
for successful design. 
In this work, we propose a novel design 
flow for CAN-based systems using the BIP 
component framework [6].  This flow 
follows the general principles of rigorous 
design previously introduced in [6]. It has 
several key features, namely it is: 
• model-based, that is, both the 

application software and the mixed 
networking hardware/software system 
descriptions are modeled by using a 
single, semantic framework. As stated 
in [6], this allows maintaining the 
coherency along with the flow by  
 

 
proving that various transformations 
used to move from one description to 
another preserve essential properties. 

• component-based, that is, it provides 
primitives for building composite 
components as the composition of 
simpler components. Using 
components reduces development 
time by favoring component reuse and 
provides support for incremental 
analysis and design. 

• tool-supported, that is, all steps in the 
design flow are realized automatically 
by tools. This ensures significant 
productivity gains, in particular due to 
elimination of potential errors that can 
occur in manual transformations. 

The BIP design flow is unique as it uses a 
single semantic framework to support 
application and system modeling, 
validation of functional correctness, 
performance analysis on system models 
and code generation in distributed 
platforms. Building faithful system models 
is mandatory for validation and 
performance analysis of complex 
applications deployed on distributed 
networked platforms. 
Generally, model-based design is getting 
increasing acceptance in many application 
domains nowadays. For example, [7] 
proposes a design flow for automotive 
systems. [8] presents a system-level 
design flow for building general automation 
and control systems. Nonetheless, to the 
best of our knowledge, no specific model-
based design flows exist for CAN-based 
systems. Furthermore, the existing ones  
 



iCC 2013                                                                                     CAN in Automation 
 

06-9 

such as [8] can be hardly adapted due to 
their inherent complexity and limitations for 
system-level modeling and analysis (e.g. 
long simulation time). 
This paper is structured as follows. Section 
2 presents briefly the underlying framework 
and details the key steps of the proposed 
design flow. Section 3 presents the model 
of the CAN protocol and the modeling 
principles of CAN-based systems in BIP. 
Section 4 provides experimental results on 
existing benchmarks and Section 5 
discusses further extensions and 
perspectives for the work. 
 
2. Design Flow for CAN-based systems  
 
The design flow is based on the Behavior – 
Interaction - Priority (BIP)1 framework and 
the associated tools for analysis and 
performance evaluation [6]. BIP provides a 
general component construction 
methodology facilitating the development of 
rigorous, trustworthy and correct-by-
construction systems.  Component 
construction in BIP is layered  
(Figure 1). The first layer (Behavior) 
consists of extended finite-state automata 
or Petri-Nets which models the basic 
processes, activities or functionalities 
(termed as atomic components) of the 
system.  Every transition is labeled by an 
action name (termed as port), a guard and 
a function operating on the atomic 
component data. The ports are used in the 
second BIP layer (Interaction) which 
defines strong or loose synchronization, 
associated with data exchange, between 
atomic components. Interactions between 
components are defined by connectors. 
The third BIP layer (Priority) is used to 
restrict the non-determinism between 
simultaneously enabled interactions. A set 
of atomic (and composite) components can 
be composed by using successive 
application of interactions and priorities and 
encapsulated into a composite component.  

  
Figure 1: BIP layered component model 

 

                                                
1 http://www.bip-components.com 

The design flow for CAN-based systems is 
illustrated in Figure 2. It involves the 
following main steps: 
I. Translate the application software to 
BIP. Applications running on top of CAN 
networks can be a priori developed using 
(possibly multiple) domain specific 
languages and/or particular programming 
models. The translation ensures their 
representation in a rigorous semantic 
framework, which is a prerequisite for any 
reliable and meaningful analysis. 
II. Modeling the CAN network in BIP.    
The obtained BIP model represents the 
underlying network hardware and the 
network protocols running on it.  This 
model is needed to capture the constraints 
imposed by the communication network on 
any potential application running on top.  
The model of the CAN network focuses on 
critical functional and timing aspects, 
including the CSMA/CA media access 
control, timing at the bit level, connectivity, 
scheduling policies for frames, correct 
frame identifier allocation etc.  
 

Figure 2: Design flow for CAN-based 
systems 
 
III. Construction of the system model in 
BIP. The system model is intended to 
represent the entire mixed SW/HW 
system, that is, the application software 
running on top of the CAN network.  This 
model is directly derived by a combined 
transformation of BIP models obtained in 
steps I and II using additional deployment 
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information, which is, the allocation and 
scheduling of various software modules 
onto network nodes. The key addition of 
this transformation is to meaningfully 
integrate the network (hardware) 
constraints on the application (software) 
model.  
IV. Functional correctness and 
performance analysis.  In the proposed 
flow, functional correctness means formal 
verification of safety properties (including 
deadlock-freedom) on the system model.   
Such properties can be proved using the 
D-Finder tool [9] and/or tested using the 
BIP simulation based tools. Performance 
analysis deals with verification of extra-
functional QoS properties.  These 
properties are proved using statistical-
model checking [10].   
V. Code generation. The BIP tools allow 
the generation of platform dependent 
C/C++ code from the CAN system model 
obtained in step III. This code can be used 
either for execution in the CAN network 
hardware components or for simulations 
with the dedicated simulation-based tools.  
 
3. CAN-based system modeling 
 
In this section, we focus on two key steps 
of the design flow, namely the modeling of 
the CAN networks (step II) and the 
construction of the system model (step III). 
3.1 BIP Model of CAN Networks 
Our model of the CAN network is 
representing the functionality of the classic 
CAN protocol [1]. Moreover, it is restricted 
to the Basic CAN [11], that is, a single 
transmit and a single receive buffer are 
used for the transmission and the 
reception of the frames accordingly. The 
model is also compliant with the High 
Speed physical layer standard [11], due its 
higher baud rate and interoperability with 
the higher-level protocols mentioned in 
section 1. Finally, the current version is not 
modeling transmission errors.  
The BIP model of a CAN network is built 
using two types of components, namely 
the CAN station and the CAN bus 
components. CAN stations mediate the 
frame transmission on the CAN bus. They 
are later connected to application 
components.   

The CAN bus is modeling the arbitration 
and the broadcast mechanisms of every 
frame to all the connected CAN stations. 
The frame transmission process consists 
of two steps. First data are transmitted to 
the CAN bus and then broadcasted to all 
the stations, including the sender. Strong 
synchronization between all the CAN 
stations and the CAN bus is used for the 
sending of each frame field. 
Each frame sent over the CAN bus can be 
of two types: data transmission (data 
frame) or data request (remote frame).  In 
both cases it is represented by the tuple 
{arb, rtr, ide, length, payload}, whose 
meaning is as follows:  
• arb is the frame identifier 
• rtr is the Remote Transfer Request 

(RTR) bit 
• ide is the IDentifier Extension (IDE) bit 
• length contains the length of the data to 

be sent 
• payload contains the data 
BIP Model of CAN stations.  CAN 
stations are composite components 
consisting of two atomic components: the 
CAN Controller and the CAN Filter. These 
components are responsible for the frame 
transmission to the CAN bus (REQUEST 
interaction) and the frame transmission to 
the application (RECV interaction) 
accordingly. The Controller component 
uses a transmission queue, in order to 
store the pending frames, that is, received 
from the application and waiting to be sent 
over the Bus. The queuing policy can 
either be of type First-in-First-Out (FIFO) 
or High Priority First (HPF), where frames 
are selected according to their priority. The 
selection is application-specific.  
The Controller component (Figure 3) is 
modeled as a Petri-Net, which (1) receives 
frames from the application and (2) sends 
or receives frames from the CAN bus 
component. The transmission process is 
initiated through the REQUEST port, which 
stores the received frame in the 
transmission queue. If the Controller has a 
frame to send, the transmission cycle 
begins (SOF port). Next, in the arbitration 
phase, labeled by the ARBITRATION port 
in the model, every Controller sends its 
identifier (arb field) to the CAN bus. The 
minimum identifier “wins” the arbitration 
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and gets broadcasted to all of them2. The 
Controller with the minimum identifier is 
allowed to proceed with the transmission 
of the length and payload fields, while all 
the others are receiving them. The end of 
the transmission cycle is denoted by the 
EOF port. Throughout this cycle’s duration 
the REQUEST port is always available, 
ensuring the seamless frame reception 
from the application. If at least one 
receiving CAN station receives the frame 
fields correctly, the sending Controller will 
stop retransmitting its frame. The receiving 
Controllers send the frames to the Filter 
component through the port SEND. 
The acceptance filters receive every frame 
from the Bus, in order to either deliver it to 
the application or ignore it. Thus, the Filter 
component is receiving all the frames 
through an interaction involving its RECV 
port and the SEND port of the Controller 
component, such that only the needed 
frames are delivered to the application. It 
checks accordingly their identifier to a list 
of identifiers provided by the application. If 
the identifier belongs to the list, the frame 
is transmitted through the transition SEND, 
otherwise it is discarded.  

  
Figure 3: CAN Controller component 
 
BIP Model of the CAN bus. The CAN bus 
component is using two groups of ports for 
its interactions: 
• The TICK port denoting one time step 

advance and, 
• The SOF, ARBITRATION, CONTROL, 

DATA, ACK, EOF ports used for 
                                                
2 If a Controller has no frame to send its 
identifier will be automatically set to 211 for the 
standard frame and 229 for the extended  

interaction with the Controller 
component 

As shown in Figure 4 the CAN bus is 
receiving the frame fields {arb, rtr, ide, 
length, payload} from the Controller 
component. A significant difference to the 
Controller is the modeling of the time step 
needed for the transmission of each frame 
field, denoted by the port TICK in the 
model.  One tick corresponds to the time 
needed for the transmission of one bit 
( bitτ ). The role of the CAN bus is to 
synchronize all the CAN stations. During 
the transmission cycle it interacts with all 
the CAN station components through the 
SOF port. The identity of the data frame 
sent to the Bus is determined through a 
check on the ide field, providing 
information about the number of bits 
transmitted through the ARBITRATION 
port. The resulting value is 12 for a 
standard frame and 32 for an extended 
representing the time needed for the 
arbitration phase, accordingly stored in 
variable g. The time duration for the 
transmission of the payload field (DATA 
port) will depend on the value of the length 
field received through the CONTROL port 
(6-tick time duration). The checksum 
computation results in a 16-tick time 
duration. The transmission cycle ends 
through the EOF port, which along with the 
ACK port correspond to a 9-tick time 
duration. The presence of the Interframe 
space (IFS) between consecutive frame 
transmissions is used to avoid Bus 
overload occurrences and corresponds to 
a 3-tick time duration in the model. After 
this time elapses the control returns to its 
initial state (ifs port).  The overall frame 
transmission time in the model is given by: 

(32 8 )frame bitC g length τ= + + ×           (1) 
 
However bit-stuffing protocol violation 
errors [1] may increase the 
aforementioned time by: 

(23 8 1)
100stuffing bit

sw lengthC τ⎢ ⎥= + + × −⎢ ⎥⎣ ⎦
   (2) 

 
where 1w g= − , since the remote request 
bit is not subject to stuffing, 1bitτ =  and 
[1,25]s∈  is a parameter of the model, 

denoting the number of stuffed bits for 
every frame.  
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The value of s for the transmission of a 
frame is handled by a given distribution on 
its interval. Related to the analysis 
provided in [12], our model is not 
considering the IFS field as part of the 
frame and the worst-case transmission 
time is provided with s equal to 25.    

 
Figure 4: CAN bus component 
 
3.2 CAN-based System Model 
Figure 5 illustrates the system model 
architecture. The application software 
consists of a number of Device 
components (upper layer).   They are 
interacting only with CAN stations for the 
transmission or reception of frames.   

 
Figure 5: System model in BIP 
Device components are application 
specific and their functionality is directly 
derived from the application software. 
They are completely decoupled of the 
CAN protocol model, described in the 
previous section, allowing the separation 
of concerns. Device components are 

modeled as Petri-Nets, separating their 
interactions with the CAN station. Concrete 
examples of such components for 
benchmark applications are presented in 
the following section. 
Communication over the Bus requires their 
composition, in order to form the system 
model (step III of section 2). To achieve this 
we apply interactions between the Device 
and the CAN station components. These 
interactions involve frame transmission 
through the REQUEST port and frame 
reception through the RECV port.  
 
4. Validation and experiments 
 
The conducted experiments are focusing on 
validation and performance evaluation for 
two case studies. The first concerns a 
deterministic powertrain network benchmark 
[13], triggering periodic data transmission 
through the CAN bus. For this case study 
we compare our approach with existing 
domain-specific tools, such as Netcarbench 
[14]. The comparison is done in terms of 
accuracy and simulation time. The second 
case study is an extension of the first one, 
where frame transmission is subject to 
probabilistic distributions applied on frame 
periods and bit-stuffing. This model exceeds 
the simulation capabilities of Netcarbench. It 
can also be analyzed using the recently 
incorporated statistical-model checking tool 
of the BIP toolset [10].  
Applications are represented as a collection 
of Device components (Figure 6). These 
components are atomic and contain a 
transmission and a reception part. Figure 6 
illustrates the former part. Frame 
transmission is handled by the REQUEST 
port, whereas frame reception by the RECV 
port. Each frame is triggered when some 
specific period is reached (port generate). 
This is achieved by consecutively 
incrementing variable t through the port 
TICK, until it is equal to the minimum period 
of the array P, which stores the periods for 
all the frames. The size of P is a model 
parameter, denoted as N. The periods may 
be fixed (Figure 6a), or differ according to a 
transmission margin, chosen from a 
probabilistic distribution and stored in the 
array m (Figure 6b). The resulting period is 
stored in the array D. The minimum period 
in both cases is first calculated in the initial 
state and afterwards iteratively. 
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Figure 6a: Periodic Device component 

 
Figure 6b: Stochastic Device component 
 
Case study 1: The deterministic 
powertrain network benchmark was 
generated by Netcarbench. It consisted of 
5 Electronic Control Units (ECUs) 
communicating over a Bus with a bit-rate 
of 500kbit/s. The queuing policy used was 
HPF and the observed Bus load was 
13.8%, distributed approximately equal in 
every ECU. Bit-stuffing was fixed to 10%, 
meaning s was equal to 10 for every frame 
in equation (2). Transmission offsets and 
clock drifts were not considered in this 
example. All parameters concerning the 
frame identifier, period and payload are 
provided in Table 1. Our analysis focused 
on the frame response times using two 
methods. The first method applied the BIP 
design flow on the generated benchmark, 
to construct the BIP system model and 
then to analyze it. The derived translation 
represented the entire SW/HW system, 
reflected by the benchmark. The obtained 
system model was accordingly simulated 
using the associated simulation-based 
tools. The second method provided the 
generated benchmark as input to RTaW-
Sim [15], a discrete-event fine-grained 
CAN bus simulator. 
The system model in BIP contained 15 
atomic components for the CAN protocol 
model and 5 atomic components for the 

application model. It also used 60 
connectors (40 for the CAN protocol and 
20 for the application model). The total 
number of transitions in the system was 
255 (210 for the CAN protocol and 45 for 
the application model). Overall the model 
totals about 1250 lines of BIP textual code. 

Table 1: Network configuration parameters 

 
Figure 7 illustrates the results obtained 
using the two methods, where the analysis 
was focused in three categories, that is, 
minimum, average and worst-case frame 
response times. The results were identical 
for both methods, in all the aforementioned 
categories. From the conducted analysis 
we can also note that approximately 55% 
of the frames had a deterministic response 
time, where the remaining 45% had a fixed 
queue waiting time, due to higher priority 
frame transmission. 
A real system time of 1 hour was 
simulated in 5 minutes and 30 seconds 
using the BIP simulator and in 13.5 
seconds using the RTaW-Sim simulator. 
The observed divergence occurred due to 
the difference in the simulation models. 

ECU CAN ID Period (ms) Payload 

1 

189 
200 
269 
298 
533 
685 

10 
20 
50 
50 

100 
2000 

5 
1 
2 
8 
6 
8 

2 

328 
371 
379 
477 
506 

20 
100 
20 
50 

200 

6 
8 
8 
5 
8 

3 

262 
427 
472 
492 
774 
977 

20 
50 

100 
100 

2000 
1000 

7 
7 
6 
7 
8 
8 

4 

159 
208 
321 
480 
502 
628 
690 
776 

20 
20 
50 
50 

100 
200 

2000 
1000 

6 
7 
7 
8 
4 
7 
8 
8 

5 

260 
307 
370 
473 
724 

20 
50 

100 
50 

200 

4 
6 
5 
6 
7 
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The BIP simulator is state-based, whereas 
RTaW-Sim is an event-based simulator. 
Nevertheless, we are currently introducing 
existing model transformations [16] in the 
BIP system model, in order to improve the 
simulation time. 

 
Figure 7: BIP/RTaW-Sim frame response 
times for the powertrain network 
 
Case study 2: The second case study 
introduced a stochastic behavior to the 
previous benchmark. First, we added a 
probabilistic margin for every period. Each 
margin followed a Poisson distribution 
based on a mean rate equal to 1/10 of 
each period. Moreover, parameter s in 
equation (2) was not fixed, but varied 
according to a uniform distribution in the 
range [1,25]. Consequently, each frame 
transmission had a different bit-stuffing 
error. The results, shown in Figure 8, are 
also divided in the three aforementioned 
categories. As it is observed, in average 
all the frames have a very small waiting 
time. However, due to the non-
deterministic behavior of the system, 
response times cannot be described only 
though the previous analysis. Therefore, in 
Figure 9 we focus on a particular frame, in 
order to show the probabilistic variation of 
the obtained response times. 

 
Figure 8: BIP frame response times for the 
stochastic powertrain network 

Figure 9: Response time distribution of a 
frame in the stochastic powertrain network 
 
5. Conclusion and ongoing work 
 
In this paper we presented a rigorous 
design flow for the correct construction of 
CAN-based systems. We explained the 
main principles of the automatic translation 
from the application software and the CAN 
communication mechanisms along with 
the underlying hardware to a BIP system 
model. This model allows the separation of 
hardware and software design issues. 
Furthermore, it can be used for 
performance analysis and for generation 
of platform dependent C/C++ code. 
For the time being, we are investigating 
further extensions to the CAN network 
model, in order to provide the full 
functionality of the recently developed 
CAN FD protocol [17]. To accomplish that 
we will add the edl and the brs fields to the 
frame mentioned in section 3. The former 
denotes the Extended Data Length bit of 
the CAN FD frame, whereas the latter 
indicates if the bit rate is switched from the 
standard to the alternate bit rate during the 
transmission of the payload field. In this 
case, the time needed for the transmission 
of one bit ( bitτ ) will be shorter than 1 tick 
and handled by the parameter tswitch in 
the model. This parameter denotes the 
switch factor between the alternate and 
the standard bit-time and its value 
depends on the selection of the CAN 
network hardware components. Finally, 
considering the bit stuffing analysis of [17] 
equation (2) will differ such that:  

stuffingC = (7+w+8× length) s
100

"

#
"

$

%
$+1+

15
4

"

#
"

$

%
$

&

'
((

)

*
++ bitτ ⇔  

7 8 4stuffing bit

w length
sC τ

⎛ + + × ⎞⎢ ⎥= +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
 (3) 
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Since the aforementioned extensions are 
only related to the CAN protocol model, 
the application software model will remain 
unaffected. In the scope of these 
extensions, we plan to develop a similar 
design flow for CAN FD systems. The 
system model will be accordingly tested 
using the BIP simulation tools, in order to 
obtain optimal configuration parameters 
for every device of the application 
software. Consequently, these parameters 
will be used to generate device 
configuration files along with the platform 
dependent C/C++ code. 
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