
iCC 2013 CAN in Automation

06-8

A model-based design flow for CAN-based systems

Alexios Lekidis1, Marius Bozga1, Didier Mauuary2, and Saddek Bensalem1

UJF/Verminag1, Cyberio2

This paper introduces a novel approach for systematical development of CAN-based
systems with guaranteed functional correctness and optimal performance. This
approach relies on formal methods for faithful modeling and analysis of such
systems, whilst taking into consideration the effects of critical parameters, such as bit
stuffing and buffer utilization. As a proof of concept, the approach has been applied
on existing benchmarks simulating realistic automotive networks. The results are
similar to ones obtained using domain-specific tools e.g. Netcarbench. Moreover, this
work creates new perspectives and reveals potential application for the generation of
optimal device configurations for the recently developed CAN FD protocol.

1. Introduction

Controller Area Network (CAN) [1] has
emerged as a dominant network
technology over the last 20 years, mainly
due its robustness and cost-effectiveness.
Nonetheless, the design of complex CAN-
based systems remains challenging. To
facilitate their design, high-level protocols
built on top of CAN, such as CANopen [2]
and DeviceNet [3], have been proposed.
These protocols offer primitives to
organize and to abstract the complexity of
low-level communication in a CAN
network. Complex networked systems can
be much easily built but, however, such
systems remain difficult to validate a priori.
Previous studies have pointed out the
importance of conformance testing [4] [5].
Nevertheless, testing occurs only late in
the development cycle and requires the
final system implementation. Earlier
detection of functional errors as well as
earlier performance analysis is paramount
for successful design.
In this work, we propose a novel design
flow for CAN-based systems using the BIP
component framework [6]. This flow
follows the general principles of rigorous
design previously introduced in [6]. It has
several key features, namely it is:
• model-based, that is, both the

application software and the mixed
networking hardware/software system
descriptions are modeled by using a
single, semantic framework. As stated
in [6], this allows maintaining the
coherency along with the flow by

proving that various transformations
used to move from one description to
another preserve essential properties.

• component-based, that is, it provides
primitives for building composite
components as the composition of
simpler components. Using
components reduces development
time by favoring component reuse and
provides support for incremental
analysis and design.

• tool-supported, that is, all steps in the
design flow are realized automatically
by tools. This ensures significant
productivity gains, in particular due to
elimination of potential errors that can
occur in manual transformations.

The BIP design flow is unique as it uses a
single semantic framework to support
application and system modeling,
validation of functional correctness,
performance analysis on system models
and code generation in distributed
platforms. Building faithful system models
is mandatory for validation and
performance analysis of complex
applications deployed on distributed
networked platforms.
Generally, model-based design is getting
increasing acceptance in many application
domains nowadays. For example, [7]
proposes a design flow for automotive
systems. [8] presents a system-level
design flow for building general automation
and control systems. Nonetheless, to the
best of our knowledge, no specific model-
based design flows exist for CAN-based
systems. Furthermore, the existing ones

iCC 2013 CAN in Automation

06-9

such as [8] can be hardly adapted due to
their inherent complexity and limitations for
system-level modeling and analysis (e.g.
long simulation time).
This paper is structured as follows. Section
2 presents briefly the underlying framework
and details the key steps of the proposed
design flow. Section 3 presents the model
of the CAN protocol and the modeling
principles of CAN-based systems in BIP.
Section 4 provides experimental results on
existing benchmarks and Section 5
discusses further extensions and
perspectives for the work.

2. Design Flow for CAN-based systems

The design flow is based on the Behavior –
Interaction - Priority (BIP)1 framework and
the associated tools for analysis and
performance evaluation [6]. BIP provides a
general component construction
methodology facilitating the development of
rigorous, trustworthy and correct-by-
construction systems. Component
construction in BIP is layered
(Figure 1). The first layer (Behavior)
consists of extended finite-state automata
or Petri-Nets which models the basic
processes, activities or functionalities
(termed as atomic components) of the
system. Every transition is labeled by an
action name (termed as port), a guard and
a function operating on the atomic
component data. The ports are used in the
second BIP layer (Interaction) which
defines strong or loose synchronization,
associated with data exchange, between
atomic components. Interactions between
components are defined by connectors.
The third BIP layer (Priority) is used to
restrict the non-determinism between
simultaneously enabled interactions. A set
of atomic (and composite) components can
be composed by using successive
application of interactions and priorities and
encapsulated into a composite component.

Figure 1: BIP layered component model

1 http://www.bip-components.com

The design flow for CAN-based systems is
illustrated in Figure 2. It involves the
following main steps:
I. Translate the application software to
BIP. Applications running on top of CAN
networks can be a priori developed using
(possibly multiple) domain specific
languages and/or particular programming
models. The translation ensures their
representation in a rigorous semantic
framework, which is a prerequisite for any
reliable and meaningful analysis.
II. Modeling the CAN network in BIP.
The obtained BIP model represents the
underlying network hardware and the
network protocols running on it. This
model is needed to capture the constraints
imposed by the communication network on
any potential application running on top.
The model of the CAN network focuses on
critical functional and timing aspects,
including the CSMA/CA media access
control, timing at the bit level, connectivity,
scheduling policies for frames, correct
frame identifier allocation etc.

Figure 2: Design flow for CAN-based
systems

III. Construction of the system model in
BIP. The system model is intended to
represent the entire mixed SW/HW
system, that is, the application software
running on top of the CAN network. This
model is directly derived by a combined
transformation of BIP models obtained in
steps I and II using additional deployment

iCC 2013 CAN in Automation

06-10

information, which is, the allocation and
scheduling of various software modules
onto network nodes. The key addition of
this transformation is to meaningfully
integrate the network (hardware)
constraints on the application (software)
model.
IV. Functional correctness and
performance analysis. In the proposed
flow, functional correctness means formal
verification of safety properties (including
deadlock-freedom) on the system model.
Such properties can be proved using the
D-Finder tool [9] and/or tested using the
BIP simulation based tools. Performance
analysis deals with verification of extra-
functional QoS properties. These
properties are proved using statistical-
model checking [10].
V. Code generation. The BIP tools allow
the generation of platform dependent
C/C++ code from the CAN system model
obtained in step III. This code can be used
either for execution in the CAN network
hardware components or for simulations
with the dedicated simulation-based tools.

3. CAN-based system modeling

In this section, we focus on two key steps
of the design flow, namely the modeling of
the CAN networks (step II) and the
construction of the system model (step III).
3.1 BIP Model of CAN Networks
Our model of the CAN network is
representing the functionality of the classic
CAN protocol [1]. Moreover, it is restricted
to the Basic CAN [11], that is, a single
transmit and a single receive buffer are
used for the transmission and the
reception of the frames accordingly. The
model is also compliant with the High
Speed physical layer standard [11], due its
higher baud rate and interoperability with
the higher-level protocols mentioned in
section 1. Finally, the current version is not
modeling transmission errors.
The BIP model of a CAN network is built
using two types of components, namely
the CAN station and the CAN bus
components. CAN stations mediate the
frame transmission on the CAN bus. They
are later connected to application
components.

The CAN bus is modeling the arbitration
and the broadcast mechanisms of every
frame to all the connected CAN stations.
The frame transmission process consists
of two steps. First data are transmitted to
the CAN bus and then broadcasted to all
the stations, including the sender. Strong
synchronization between all the CAN
stations and the CAN bus is used for the
sending of each frame field.
Each frame sent over the CAN bus can be
of two types: data transmission (data
frame) or data request (remote frame). In
both cases it is represented by the tuple
{arb, rtr, ide, length, payload}, whose
meaning is as follows:
• arb is the frame identifier
• rtr is the Remote Transfer Request

(RTR) bit
• ide is the IDentifier Extension (IDE) bit
• length contains the length of the data to

be sent
• payload contains the data
BIP Model of CAN stations. CAN
stations are composite components
consisting of two atomic components: the
CAN Controller and the CAN Filter. These
components are responsible for the frame
transmission to the CAN bus (REQUEST
interaction) and the frame transmission to
the application (RECV interaction)
accordingly. The Controller component
uses a transmission queue, in order to
store the pending frames, that is, received
from the application and waiting to be sent
over the Bus. The queuing policy can
either be of type First-in-First-Out (FIFO)
or High Priority First (HPF), where frames
are selected according to their priority. The
selection is application-specific.
The Controller component (Figure 3) is
modeled as a Petri-Net, which (1) receives
frames from the application and (2) sends
or receives frames from the CAN bus
component. The transmission process is
initiated through the REQUEST port, which
stores the received frame in the
transmission queue. If the Controller has a
frame to send, the transmission cycle
begins (SOF port). Next, in the arbitration
phase, labeled by the ARBITRATION port
in the model, every Controller sends its
identifier (arb field) to the CAN bus. The
minimum identifier “wins” the arbitration

iCC 2013 CAN in Automation

06-11

and gets broadcasted to all of them2. The
Controller with the minimum identifier is
allowed to proceed with the transmission
of the length and payload fields, while all
the others are receiving them. The end of
the transmission cycle is denoted by the
EOF port. Throughout this cycle’s duration
the REQUEST port is always available,
ensuring the seamless frame reception
from the application. If at least one
receiving CAN station receives the frame
fields correctly, the sending Controller will
stop retransmitting its frame. The receiving
Controllers send the frames to the Filter
component through the port SEND.
The acceptance filters receive every frame
from the Bus, in order to either deliver it to
the application or ignore it. Thus, the Filter
component is receiving all the frames
through an interaction involving its RECV
port and the SEND port of the Controller
component, such that only the needed
frames are delivered to the application. It
checks accordingly their identifier to a list
of identifiers provided by the application. If
the identifier belongs to the list, the frame
is transmitted through the transition SEND,
otherwise it is discarded.

Figure 3: CAN Controller component

BIP Model of the CAN bus. The CAN bus
component is using two groups of ports for
its interactions:
• The TICK port denoting one time step

advance and,
• The SOF, ARBITRATION, CONTROL,

DATA, ACK, EOF ports used for

2 If a Controller has no frame to send its
identifier will be automatically set to 211 for the
standard frame and 229 for the extended

interaction with the Controller
component

As shown in Figure 4 the CAN bus is
receiving the frame fields {arb, rtr, ide,
length, payload} from the Controller
component. A significant difference to the
Controller is the modeling of the time step
needed for the transmission of each frame
field, denoted by the port TICK in the
model. One tick corresponds to the time
needed for the transmission of one bit
(bitτ). The role of the CAN bus is to
synchronize all the CAN stations. During
the transmission cycle it interacts with all
the CAN station components through the
SOF port. The identity of the data frame
sent to the Bus is determined through a
check on the ide field, providing
information about the number of bits
transmitted through the ARBITRATION
port. The resulting value is 12 for a
standard frame and 32 for an extended
representing the time needed for the
arbitration phase, accordingly stored in
variable g. The time duration for the
transmission of the payload field (DATA
port) will depend on the value of the length
field received through the CONTROL port
(6-tick time duration). The checksum
computation results in a 16-tick time
duration. The transmission cycle ends
through the EOF port, which along with the
ACK port correspond to a 9-tick time
duration. The presence of the Interframe
space (IFS) between consecutive frame
transmissions is used to avoid Bus
overload occurrences and corresponds to
a 3-tick time duration in the model. After
this time elapses the control returns to its
initial state (ifs port). The overall frame
transmission time in the model is given by:

(32 8)frame bitC g length τ= + + × (1)

However bit-stuffing protocol violation
errors [1] may increase the
aforementioned time by:

(23 8 1)
100stuffing bit

sw lengthC τ⎢ ⎥= + + × −⎢ ⎥⎣ ⎦
 (2)

where 1w g= − , since the remote request
bit is not subject to stuffing, 1bitτ = and
[1,25]s∈ is a parameter of the model,

denoting the number of stuffed bits for
every frame.

iCC 2013 CAN in Automation

06-12

The value of s for the transmission of a
frame is handled by a given distribution on
its interval. Related to the analysis
provided in [12], our model is not
considering the IFS field as part of the
frame and the worst-case transmission
time is provided with s equal to 25.

Figure 4: CAN bus component

3.2 CAN-based System Model
Figure 5 illustrates the system model
architecture. The application software
consists of a number of Device
components (upper layer). They are
interacting only with CAN stations for the
transmission or reception of frames.

Figure 5: System model in BIP
Device components are application
specific and their functionality is directly
derived from the application software.
They are completely decoupled of the
CAN protocol model, described in the
previous section, allowing the separation
of concerns. Device components are

modeled as Petri-Nets, separating their
interactions with the CAN station. Concrete
examples of such components for
benchmark applications are presented in
the following section.
Communication over the Bus requires their
composition, in order to form the system
model (step III of section 2). To achieve this
we apply interactions between the Device
and the CAN station components. These
interactions involve frame transmission
through the REQUEST port and frame
reception through the RECV port.

4. Validation and experiments

The conducted experiments are focusing on
validation and performance evaluation for
two case studies. The first concerns a
deterministic powertrain network benchmark
[13], triggering periodic data transmission
through the CAN bus. For this case study
we compare our approach with existing
domain-specific tools, such as Netcarbench
[14]. The comparison is done in terms of
accuracy and simulation time. The second
case study is an extension of the first one,
where frame transmission is subject to
probabilistic distributions applied on frame
periods and bit-stuffing. This model exceeds
the simulation capabilities of Netcarbench. It
can also be analyzed using the recently
incorporated statistical-model checking tool
of the BIP toolset [10].
Applications are represented as a collection
of Device components (Figure 6). These
components are atomic and contain a
transmission and a reception part. Figure 6
illustrates the former part. Frame
transmission is handled by the REQUEST
port, whereas frame reception by the RECV
port. Each frame is triggered when some
specific period is reached (port generate).
This is achieved by consecutively
incrementing variable t through the port
TICK, until it is equal to the minimum period
of the array P, which stores the periods for
all the frames. The size of P is a model
parameter, denoted as N. The periods may
be fixed (Figure 6a), or differ according to a
transmission margin, chosen from a
probabilistic distribution and stored in the
array m (Figure 6b). The resulting period is
stored in the array D. The minimum period
in both cases is first calculated in the initial
state and afterwards iteratively.

iCC 2013 CAN in Automation

06-13

Figure 6a: Periodic Device component

Figure 6b: Stochastic Device component

Case study 1: The deterministic
powertrain network benchmark was
generated by Netcarbench. It consisted of
5 Electronic Control Units (ECUs)
communicating over a Bus with a bit-rate
of 500kbit/s. The queuing policy used was
HPF and the observed Bus load was
13.8%, distributed approximately equal in
every ECU. Bit-stuffing was fixed to 10%,
meaning s was equal to 10 for every frame
in equation (2). Transmission offsets and
clock drifts were not considered in this
example. All parameters concerning the
frame identifier, period and payload are
provided in Table 1. Our analysis focused
on the frame response times using two
methods. The first method applied the BIP
design flow on the generated benchmark,
to construct the BIP system model and
then to analyze it. The derived translation
represented the entire SW/HW system,
reflected by the benchmark. The obtained
system model was accordingly simulated
using the associated simulation-based
tools. The second method provided the
generated benchmark as input to RTaW-
Sim [15], a discrete-event fine-grained
CAN bus simulator.
The system model in BIP contained 15
atomic components for the CAN protocol
model and 5 atomic components for the

application model. It also used 60
connectors (40 for the CAN protocol and
20 for the application model). The total
number of transitions in the system was
255 (210 for the CAN protocol and 45 for
the application model). Overall the model
totals about 1250 lines of BIP textual code.

Table 1: Network configuration parameters

Figure 7 illustrates the results obtained
using the two methods, where the analysis
was focused in three categories, that is,
minimum, average and worst-case frame
response times. The results were identical
for both methods, in all the aforementioned
categories. From the conducted analysis
we can also note that approximately 55%
of the frames had a deterministic response
time, where the remaining 45% had a fixed
queue waiting time, due to higher priority
frame transmission.
A real system time of 1 hour was
simulated in 5 minutes and 30 seconds
using the BIP simulator and in 13.5
seconds using the RTaW-Sim simulator.
The observed divergence occurred due to
the difference in the simulation models.

ECU CAN ID Period (ms) Payload

1

189
200
269
298
533
685

10
20
50
50

100
2000

5
1
2
8
6
8

2

328
371
379
477
506

20
100
20
50

200

6
8
8
5
8

3

262
427
472
492
774
977

20
50

100
100

2000
1000

7
7
6
7
8
8

4

159
208
321
480
502
628
690
776

20
20
50
50

100
200

2000
1000

6
7
7
8
4
7
8
8

5

260
307
370
473
724

20
50

100
50

200

4
6
5
6
7

iCC 2013 CAN in Automation

06-14

The BIP simulator is state-based, whereas
RTaW-Sim is an event-based simulator.
Nevertheless, we are currently introducing
existing model transformations [16] in the
BIP system model, in order to improve the
simulation time.

Figure 7: BIP/RTaW-Sim frame response
times for the powertrain network

Case study 2: The second case study
introduced a stochastic behavior to the
previous benchmark. First, we added a
probabilistic margin for every period. Each
margin followed a Poisson distribution
based on a mean rate equal to 1/10 of
each period. Moreover, parameter s in
equation (2) was not fixed, but varied
according to a uniform distribution in the
range [1,25]. Consequently, each frame
transmission had a different bit-stuffing
error. The results, shown in Figure 8, are
also divided in the three aforementioned
categories. As it is observed, in average
all the frames have a very small waiting
time. However, due to the non-
deterministic behavior of the system,
response times cannot be described only
though the previous analysis. Therefore, in
Figure 9 we focus on a particular frame, in
order to show the probabilistic variation of
the obtained response times.

Figure 8: BIP frame response times for the
stochastic powertrain network

Figure 9: Response time distribution of a
frame in the stochastic powertrain network

5. Conclusion and ongoing work

In this paper we presented a rigorous
design flow for the correct construction of
CAN-based systems. We explained the
main principles of the automatic translation
from the application software and the CAN
communication mechanisms along with
the underlying hardware to a BIP system
model. This model allows the separation of
hardware and software design issues.
Furthermore, it can be used for
performance analysis and for generation
of platform dependent C/C++ code.
For the time being, we are investigating
further extensions to the CAN network
model, in order to provide the full
functionality of the recently developed
CAN FD protocol [17]. To accomplish that
we will add the edl and the brs fields to the
frame mentioned in section 3. The former
denotes the Extended Data Length bit of
the CAN FD frame, whereas the latter
indicates if the bit rate is switched from the
standard to the alternate bit rate during the
transmission of the payload field. In this
case, the time needed for the transmission
of one bit (bitτ) will be shorter than 1 tick
and handled by the parameter tswitch in
the model. This parameter denotes the
switch factor between the alternate and
the standard bit-time and its value
depends on the selection of the CAN
network hardware components. Finally,
considering the bit stuffing analysis of [17]
equation (2) will differ such that:

stuffingC = (7+w+8× length) s
100

"

#
"

$

%
$+1+

15
4

"

#
"

$

%
$

&

'
((

)

*
++ bitτ ⇔

7 8 4stuffing bit

w length
sC τ

⎛ + + × ⎞⎢ ⎥= +⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
 (3)

iCC 2013 CAN in Automation

06-15

Since the aforementioned extensions are
only related to the CAN protocol model,
the application software model will remain
unaffected. In the scope of these
extensions, we plan to develop a similar
design flow for CAN FD systems. The
system model will be accordingly tested
using the BIP simulation tools, in order to
obtain optimal configuration parameters
for every device of the application
software. Consequently, these parameters
will be used to generate device
configuration files along with the platform
dependent C/C++ code.

Alexios Lekidis
UJF/Verimag
2 Avenue de Vignate.
FR-38610 Gières
Alexios.Lekidis@imag.fr
http://www-verimag.imag.fr/~lekidis/

Marius Bozga
UJF/Verimag
2 Avenue de Vignate.
FR -38610 Gières
Marius.Bozga@imag.fr
http://www-verimag.imag.fr/~bozga/

Didier Mauuary
Cyberio
6 bis Chemin des prés Inovallée
FR-38240 Meylan
Didier.Mauuary@cyberio-dsi.com

Saddek Bensalem
UJF/Verimag
2 Avenue de Vignate.
FR -38610 Gières
Saddek.Bensalem@imag.fr
http://www-verimag.imag.fr/~bensalem/

References
[1] Robert Bosch. CAN specification version

2.0. Robert Bosch GmbH, Postfach,
300240, 1991.

[2] CANopen CiA. Application layer and
communication profile, Draft Standard 301,
2002.

[3] Specification, DeviceNet. "Release 2.0,
including Errata 4." April 1 (2001): 1995-
2001.

[4] Zeltwanger Holger, "CAN Implementations
and Conformance Testing" , SAE
Technical Paper 1999-01-1273, 1999

[5] Road Vehicles- Controller Area Network
(CAN)- Conformance Test Plan, ISO
16845:2000

[6] Basu, A., Bensalem, S., Bozga, M.,
Combaz, J., Jaber, M., Nguyen, T.H.,
Sifakis, J.: Rigorous component-based
design using the BIP framework. IEEE
Software, Special Edition – Software
Components beyond Programming – from
Routines to Services 28(3), 41–48 (2011)

[7] Sangiovanni-Vincentelli, Alberto, and
Marco Di Natale. "Embedded system
design for automotive applications."
Computer 40.10 (2007): 42-51.

[8] Yang, Y., Pinto, A., Sangiovanni-
Vincentelli, A., & Zhu, Q. (2010,
November). A design flow for building
automation and control systems. In Real-
Time Systems Symposium (RTSS), 2010
IEEE 31st (pp. 105-116). IEEE.

[9] Bensalem, S., Bozga, M., Nguyen, T. H., &
Sifakis, J. (2009, January). D-finder: A tool
for compositional deadlock detection and
verification. In Computer Aided Verification
(pp. 614-619). Springer Berlin Heidelberg.

[10] Saddek Bensalem, Marius Bozga, Benoit
Delahaye, Cyrille Jegourel, Axel Legay,
and Ayoub Nouri. Statistical model
checking QOS properties of systems with
SBIP. In Leveraging Applications of Formal
Methods, Verification and Validation.
Technologies for Mastering Change,
Pages 327–341. Springer, 2012

[11] Pfeiffer, Olaf, Andrew Ayre, and Christian
Keydel. Embedded networking with CAN
and CANopen. Copperhill Media, 2008.

[12] Davis, R. I., Burns, A., Bril, R. J., &
Lukkien, J. J. (2007). Controller Area
Network (CAN) schedulability analysis:
Refuted, revisited and revised. Real-Time
Systems, 35(3), 239-272.

[13] Cook, J. A., Sun, J., Buckland, J. H.,
Kolmanovsky, I. V., Peng, H., & Grizzle, J.
W. (2006). Automotive powertrain
control—A survey. Asian Journal of
Control, 8(3), 237-260.

[14] Nicolas Navet Christelle Braun, Lionel
Havet. NETCARBENCH: A BENCHMARK
FOR TECHNIQUES AND TOOLS USED
IN THE DESIGN OF AUTOMOTIVE
COMMUNICATION SYSTEMS. 7th IFAC
International Conference on Fieldbuses
and Networks in Industrial and Embedded
Systems, 7(45):321–328, 2007.

[15] Nicolas Navet, Aurelien Monot, Jörn
Migge, et al. Frame latency evaluation:
when simulation and analysis alone are
not enough. In 8th IEEE International
Workshop on Factory Communication
Systems (WFCS2010), Industry Day,
2010.

[16] Bozga, Marius, Mohamad Jaber, and
Joseph Sifakis. "Source-to-source
architecture transformation for
performance optimization in BIP."
Industrial Informatics, IEEE Transactions
on 6.4 (2010): 708-718.

[17] Robert Bosch GmbH, CAN with Flexible
Data-Rate, Specification, Version 1.0, April
2012,http://www.bosch-
semiconductors.de/media/pdf_1/canliteratu
r/can_fd_spec.pdf

