
iCC 2005 CAN in Automation

08-16

CAN-enabled network processor

D.Kenny, F.Morgan, G.Sweeney, M.Glavin, N.Murphy

This paper proposes extending the high performance Network Processor (NP)
architecture to meet cost/performance requirements of new emerging high speed and
higher cost networks for the automation and automotive industries. The use of NP
architectures for implementation of IDB-1394, MOST and Power Ethernet networks,
which commonly embed CAN bus control elements, is proposed.

The paper describes the implementation of a CAN enabled NP, incorporating a CAN
co-processor within an Intel IXP NP hardware emulation system, and supporting the
CANopen protocol. The proposed NP would enable packet transfer between CAN-bus
and a range of existing NP communication protocols, including Ethernet, HSS, USB,
PCI and UART.

1 Introduction

A Network Processor (NP) is a high
performance, configurable and multi-
protocol communications packet processor
optimised for use in networking
applications.

This paper proposes the integration of
emerging high-speed in-car networks, e.g.,
MOST (Media Oriented Systems
Transport) and IDB-1394 (Intelligent Data
Bus) within a NP architecture.

Likewise, the automation industry offers a
range of appl icat ions, e.g. , a
communication upgrade platform for
existing CAN installations, providing an
interface between legacy CAN installations
and recently introduced networks such as
Ethernet.

This paper describes the design and
integration of a CAN co-processor into a
NP. A CAN enabled NP hardware
implementation, running CANopen, has
been designed and verified. This platform
enables integration of developing high
performance protocols which commonly
embed CAN bus control elements or link
with legacy CAN devices.

The structure of the paper is as follows:
Section 2 introduces Network Processors.
Section 3 outlines a range of potential

applications of NPs in automotive and
automation applications.. Section 4
describes the IDB and MOST bus
protocols. Section 5 details the design of
the CAN co-processor. Section 6
describes the implementation of higher
layer CANopen software within the NPE.
Section 7 describes the hardware
implementation and system verification.
Section 8 concludes the paper.

2 Network Processors

NPs employ multiple Network
Processing Engines (NPE) to perform
packet-processing tasks concurrently.
NPEs in turn use concurrent hardware
networking co-processors to reduce their
workload. Each co-processor is
independently controllable from the NPE
RISC core. The mix of core and co-
processors provide unique configurability.

High growth in the application of NPs is
predicted for future networking systems,
requiring a high degree of flexibility to
support evolving networking services.
Over the period of second half 2002 and
first half 2003, NP revenue was estimated
at $61M. The forecast for 2006 is $190M
[1].

NP vendors have implemented a variety of
hardware assist engines (co-processors),

iCC 2005 CAN in Automation

08-17

either hardwired or configurable, having a
limited programming interface and
normally used for tasks such as table
lookup, encryption and communication bus
interfacing.

3. NP Applications

NPs offer applications in high
performance industrial automation and
automotive networks.

The performance model of NPs is in
excess of that required by CAN-bus-only
applications. However, a number of high
performance network protocols are
outlined, including IDB, MOST and Power
Ethernet which commonly embed CAN
bus control elements or link with legacy
CAN devices.

3.1 NPs in Industrial Automation

In automation a CAN enabled NP
could offer a communication upgrade
platform for existing CAN installations,
providing an interface between legacy
CAN installations and networks newly
introduced to automation such as Ethernet
and Power Ethernet. The NP would also
offer CAN bridge applications to factories
using two or more CAN-buses running at
different wire speeds.

3.2 NPs in Automotive Networks.

Figure 1 illustrates a typical in-car
network, including applications ranging
from diagnostics and control via CAN-bus
to high performance multi-media.

NP

Anti-lock
brakes

Engine
Management

Cruise
Control

CAN
Bus 1 User

display
&

controls

Window
and mirror
movement

Seat
Movemet

CAN
Bus 2

Wireless
Ethernet

GPS

CD player Digital radio

Radar

Speaker

Speaker

MOST /
IDB-1394

Camera

 Fig 1 In-car network elements with NP core

No currently developed single in-car bus
can adequately handle the entertainment,
safety, and intelligent-control equipment of
future cars. New driver assistance and
telematics systems have increased the
annual growth rates of in-car electronics to
16%, according to the IEEE (as quoted in
Xilinx Xcell Journal [2]). This also
forecasts that electronics would account
for 25% of the cost of a mid-size car in
2005.

The highest growth area is telematics
systems (the convergence of mobile
telecommunications and information
processing).

Telematics applications exhibit market
conditions of short time to market with
changing standards / protocols and high
bandwidth. New market conditions differ
from the long design cycles of traditional
in-car electronics.

iCC 2005 CAN in Automation

08-18

The developing IDB-1394 standard
supports audio and video and includes a
C A N - b a s e d c o n t r o l n e t w o r k
communicating commands and feedback
information. With the changes in market
conditions, NPs have been considered for
in-car networks.

NPs provide :

• flexibility of a programmable device

• high performance of a fixed function
hardware device

• communication-specific functions more
efficiently than general-purpose
processors (while still providing
considerable system flexibility along
with high-performance hardware
packet processing functions)

• reduced validation and fast time to
market

• interoperability

• enhanced system integration

• reuse of software over generations of
hardware co-processor design

Extending existing NP architectures to
support protocols spanning from CAN-bus
to MOST (Media Oriented Systems
Transport) and IDB, offers wide
application.

A CAN enabled NP emulation system has
been developed offering support of packet
transfer between CAN-bus and a range of
existing NP communication protocols,
including Ethernet, HSS, USB, PCI and
UART.

This work has been extended to consider
incorporation of a NP-based MOST and
IDB to CAN-bus gateway.

4 IDB and MOST Bus Protocols

Two major automotive bus
protocols, MOST and IDB are considered
for future integration onto NP systems.
Sections 4.1 and 4.2 describe these
protocols.

4.1 MOST Bus

MOST (Media Oriented Systems
Transport), an open standard for
infotainment networks is based on the
D2B [3] optical media network physical
layer. It defines the protocol, hardware,

and software layers necessary to allow for
transport of control, real-time, and packet
data at speeds from a few kbps up to
24.8Mbps. MOST offers full support for
real-time audio and compressed video.
Seve ra l Eu ropean au tomo t i ve
manufacturers are considering MOST as a
potential common standard and
implementing MOST as an internal vehicle
network.

4.2 IDB Bus

The develop ing IDB-1394
(Intelligent Data Bus) standard, will
support audio/video and include a CAN-
based control network.

The IDB forum manages the IDB-C and
IDB-1394 buses and standard IDB
interfaces.

4.2.1 IDB-C Bus

Based on CAN bus, IDB-C targets
devices with data rates of 250 kb/s. The
reported CAN enabled NP can be further
developed to support IDB-C.

 4.2.2 IDB-1394 Bus

The IDB-1394 specification is an
automotive supplement to the existing
IEEE 1394 (Firewire) standards, already
well established in the consumer
electronics industry. IDB-1394 supports
consumer multimedia applications for in-
vehicle networking. Existing 1394 portable
devices can be plugged directly into the
new automotive multimedia bus using an
IDB-1394 defined customer convenience
port. The IDB forum announced (January
2005 [4]) IDB-1394 as the first automotive
networking technology to be approved by
the DVD Copy Control Association (DVD-
CCA) for distributing copy-protected digital
video content on a localised digital
network.

This represents a major step forward in
bringing high quality all-digital DVD
content to vehicles, clearing the way for
IDB-1394 technology to be used in end-to-
end digital video applications.

iCC 2005 CAN in Automation

08-19

5 CAN Co-processor Design

Figure 2 illustrates the CAN co-
processor architecture and interfaces
(NPE and CAN-bus transceiver).

The implementation of a CAN enabled NP
incorporating a CAN-bus co-processor
within an Intel IXP [5] NP hardware
emulation system, and supporting the
CANopen protocol, is described.

The NPE RISC core regulates
communicat ion between var ious
embedded communication co-processors
through a defined instruction set. The Co-
processor Bus Interface handles data
exchange between the NPE and co-
processors, and also directly between co-
processors.

Twelve CAN co-processor instructions are
defined within the NPE, e.g.,

1. Write standard frame format
message header

2. Write timing registers.

CSR

CAN Controller [5]

Co-processor
Bus Interface

CAN Interface

Rx

Tx

CAN co-processor

Tx Module

Rx Module

2.0A & 2.0B

 Fig 3 CAN co-processor internal architecture

These instructions are coded into 4-bit
values on the Co-processor Bus Interface.

Figure 3 illustrates the internal architecture
of the CAN co-processor. This includes a
CAN Controller and a CAN Interface block.

The CAN Controller incorporates a
modified CAN Controller (Saytam [6]) and
supports CAN 2.0A and 2.0B, with
acceptance filtering. The CAN Controller
contains transmitter and receiver units.
The former incorporates CRC generator
and bit-stuffer. The receiver block
performs CAN bus synchronisation, de-
serialisation, de-stuffing and error
detection of the incoming CAN frame.

The CAN Interface block is designed to
interface the CAN controller and the NPE.
It decodes the instructions and manages
the data accordingly.

8-byte message buffering between NPE
and CAN Controller. The CAN Interface
module consists mainly of three sub-
modules: CSR, Transmit Module and
Receive Module.

can_h

can_l

CAN
bus

CAN Node 2

(CAN Node 3)

CAN Node 1

NP IXP425 Emulation Board

CAN-bus
Transceiver

CAN Co-processor

can_tx

can_rx

Co-Processor
Bus Interface

DRAM

.log

802.11

NPE A

I/F #2

CAN analyser

Co-processor #3
MOST / IDB-1394

Display
Screen

Radar

DVD
Player

Xscale Co-processor #2
(Encryption, UART etc.)

Instruction
Memory

Data
Memory

Ethernet I/F

NPE B

Fig 2 CAN co-processor architecture and interfaces to NPE and CAN bus

iCC 2005 CAN in Automation

08-20

5.1 Control & Status Register (CSR)

The CSR stores configuration
information defined by the NPE, along with
diagnostics for the CAN Controller. On
completion of the configuration phase, the
CAN co-processor transfers messages to
and from the NPE for subsequent re-
routing or processing by the NP.

Configuration information is stored in the
Timing Register and the Acceptance
Regis ter . When execut ing the
configuration of the CAN co-processor, the
NPE usually assigns values to these
registers. The CSR also contains an Error
Code register. From which the NPE can
determine what type of error has occurred
(Bit, Stuff, Form etc), position of the error
in the CAN bit stream and whether the
error occurred during reception or
transmission of a message. The Error
Code Register, stores a Received Error
Count and Transmission Error Count, from
which the NPE can determine CAN co-
processor operation mode (Error Active,
Error Passive or Bus Off).

5.2 Transmit Module

The Transmit Module decodes and
bundles data from the NPE for output on
the CAN Bus. The NPE instructs this
module to transmit data to the CAN
Controller. No messages are stored within
the CAN Controller. The NPE stores all co-
processor data (within data memory). The
Transmit Module informs the NPE when
the CAN bus is free. The NPE transfers
message data from memory to the
Transmit Module.

5.3 Receive Module

The CAN Controller bundles
received messages for storage in the
Receive Module. The Receive Module
informs the NPE which reads the stored
data. The receive module buffers only one
CAN message since the NPE operates at
clock speeds up to 200MHz while the CAN
controller operates at 20MHz.

6 CANopen Implementation on CAN
enabled NP

The CAN enabled NP hardware
implementation described supports first
and second layers of the OSI reference
model. DeviceNet, SAE J1939,
CANKingdom and CANopen were
considered to support higher layers.

DeviceNet is used mainly for industrial
applications as a low cost solution linking
industrial devices to eliminate expensive
hard wiring [7].

SAE J1939 was developed for in-vehicle
communication in trucks, and has been
adopted by other vehicles such as
agricultural and forestry vehicles.

CANKingdom is mainly applied to machine
control, e.g., industrial robot control,
weaving machines, mobile hydraulics etc.

CANopen was initially developed for
motion-oriented machine control networks
and now has broad application, including
medical equipment, off-road vehicles,
building-automation etc.

CANopen was selected for implementation
on the NP due to its flexible configurability.
In addition, Power Ethernet protocol,
which is incorporated within the NP, is
proven to work well with CANopen.

The CANopen Object Dictionary describes
the complete operation of a device by way
of communication objects. Communication
objects include:

• Process Data Objects (PDO)

• Service Data Objects (SDO)

• Network Management Objects
(NMT)

The Object Dictionary for the NP is stored
in NPE data memory.

To best utilise NPE hardware features, a
low-level programming language has been
used to program the NPE. Once compiled
the code is downloaded into the NPE’s
Instruction memory(shown in figure 4).

The availability of a threading mechanism
wi th in the NP s impl i f ies the
implementation of the CANopen protocol.

A Conditional Co-processor is used during
initialisation to configure NPE hardware
threading, and reduce NPE workload.

iCC 2005 CAN in Automation

08-21

CAN
Coprocessor

Read/Write CAN bus

Conditional
Coprocessor

NPE

Data
Memory

CANopen s/w Object
Dictionary

& CAN Data.

Instruction
Memory

Threading
setup

Fig 4 NPE CAN and conditional co-processors

High priority threads are used to service
the physical interface with the CAN co-
processor, responding to signals such as,
Receive Module full or Transmit Module
empty. Other high-priority threads are set
to trigger on bus errors and network
management objects

On receipt of a message from the CAN co-
processor, the NPE stores the message in
its data memory. CANopen software in the
NPE checks the received message type
identifier and sets a related flag in the
NPE. This in turn triggers a lower priority
thread that deals with the message
accordingly.

Examples of lower priority threads are:

SDO Download : receives information to
change node configuration, writing this
information to the Object Dictionary

Receive PDO : depending on message ID,
sends message to DRAM for transmission
on another interface, or performs some
processing and resends onto CAN bus

Heartbeat Consumer : monitors heartbeats
of other nodes.

7 Hardware Implementation & System
Verification

The CAN co-processor Verilog model
simulation testbench incorporates a NPE
Bus Functional Model that facilitates
extensive verification using Modelsim.

Intel’s IXP NP hardware emulator system
incorporating the CAN co-processor has
been synthesised and implemented using
three Xilinx Virtex XCV3200E devices
connected to an ARM processor. The
CAN transceiver daughter card connects
physical CAN devices to the CAN enabled
NP system emulator using a Microchip

2551 High-Speed CAN Transceiver
(Figure 1).

Extensive hardware prototype testing has
been performed in a close to real world
environment incorporating a two-node
CAN analyser [8], configured to send
messages on node 1 (with identifier). The
CAN enabled NP receives node 1 data
and re-transmits to CAN analyser node 2.

Messages received by the NPE,
addressed to other interfaces or networks,
(such as Ethernet or USB), are stored in
DRAM and the NPE instructs the Xscale
processor to process this data.

Messages in DRAM for transmission on
the CAN bus are read by the NPE and
transferred to the CAN co-processor for
transmission onto the CAN bus. Figure 1
illustrates the fully implemented system.

The system has also been verified using
the NPE configured as master of a three
node CANopen network. The NP modifies
the object dictionary of the two CAN
analyser nodes using SDOs. Various
CANopen communication objects are sent
and received by the NP.

A typical vehicle can contain two or three
separate CAN buses operating at different
transmission rates (shown in Figure 1).
Low speed CAN, operating at less than
125kb/s, manages body control
electronics, such as seat and window
movement controls. Higher speed (up to
1Mb/s) CAN operate more real-time critical
functions such as engine management,
antilock brakes and cruise control.

The hardware implementation of a NP-
based CAN bridge is in progress using a
NP with multiple CAN co-processors to
enable message transfer between high
and low speed CAN buses.

8 Conclusions and Future Work

The paper proposes the application of NPs
to meet cost/performance requirements of
new emerging high speed and higher cost
networks for the automation and
automotive industries.

The performance model of NPs is in
excess of that required by CAN-bus-only
applications.

iCC 2005 CAN in Automation

08-22

A number of network protocols have been
outlined and proposed, including IDB,
MOST and Power Ethernet. These
networks commonly embed CAN bus
control elements.

This paper describes the design and
integration of a CAN co-processor into a
NP. A CAN enabled NP hardware
implementation, running CANopen, has
been designed and verified. This platform
also enables integration of developing high
performance protocols with CAN bus
protocols on a variety of both legacy and
new applications.

Extension of this work to CAN gateway,
MOST and IDB implementations is now
being considered

References:

[1] Chris Rosewarne, “Network
Processors: Evaluating Architectures for
Leading Edge Applications”, TechOnline
W h i t e P a p e , M a r c h 2 0 0 4 ,
www.techonline.com

[2] Karen Parnell, “Put the right bus in your
car”, Xilinx Xcell Journal, December 2003

[3] Thomas Kibler, Stefan Poferl, Gotthard
Böck, Hans-Peter Huber, and Eberhard
Zeeb, “Optical Data Buses for Automotive
Applications”. Journal of Lightwave
Technology, Vol. 22, Nn. 9, Sept 2004

[4] “IDB-1394 becomes the first Digital
Automotive Network approved to carry
“Localized” DVD video”, Jan 2005,
www.idbforum.org

[5] Intel IXP425 NP, Data Sheet,
ftp://download.intel.com/design/network/da
tashts/25247904.pdf

[6] Satyam Computer Services Ltd. CAN
IP Core http://www.satyam.com/solutions/
s_tsilides.html

[7] CAN In Automation “CAN higher layer
protocols”. http://www.can-cia.org/

[8] Vector Informatik “CANalyzer”

http://www.vector-informatik.com

Author 1: David Kenny
Company: NUI, Galway
Address: Electronic Engineering Dept.
Phone: +353 91 493137
Fax: +353 91 494511
E-mail: david.m.kenny@nuigalway.ie
Website: www.ee.nuigalway.ie

Author 2: Fearghal Morgan
Company: NUI, Galway
E-mail: fearghal.morgan@nuigalway.ie

Author 3: Gerard Sweeney
Company: NUI, Galway

Author 5: Martin Glavin
Company: NUI, Galway

Author 4: Noel Murphy
Company: Intel Communications Europe
Address: Shannon, Co.Clare, Ireland

